Verschiebung Durchschnitt Anzahl Perioden


Moving Average Calculator Bei einer Liste von sequentiellen Daten können Sie den n-Punkt gleitenden Durchschnitt (oder Rolling Average) konstruieren, indem Sie den Durchschnitt jedes Satzes von n aufeinanderfolgenden Punkten finden. Wenn Sie beispielsweise den bestellten Datensatz 10, 11, 11, 15, 13, 14, 12, 10, 11 haben, beträgt der 4-Punkt-Gleitdurchschnitt 11,75, 12,5, 13,25, 13,5, 12,25, 11,75 Umlaufende Mittelwerte werden verwendet Um sequenzielle Daten zu glätten, machen sie scharfe Spitzen und tauchen weniger ausgeprägt, weil jeder Rohdatenpunkt nur ein Bruchteil im gleitenden Durchschnitt gegeben wird. Je größer der Wert von n ist. Je glatter der Graphen des gleitenden Durchschnitts im Vergleich zum Graphen der ursprünglichen Daten. Aktienanalysten betrachten oft gleitende Durchschnitte der Aktienkursdaten, um Trends vorherzusagen und Muster klarer zu sehen. Sie können den Rechner unten verwenden, um einen gleitenden Durchschnitt eines Datensatzes zu finden. Anzahl der Begriffe in einem einfachen n - Point Moving Average Wenn die Anzahl der Begriffe im Originalsatz d ist und die Anzahl der in jedem Durchschnitt verwendeten Begriffe n ist. Dann ist die Anzahl der Begriffe in der gleitenden durchschnittlichen Sequenz zum Beispiel, wenn Sie eine Sequenz von 90 Aktienkursen haben und den 14-tägigen Rollmitteldurchschnitt der Preise nehmen, wird die rollende durchschnittliche Sequenz 90 - 14 1 77 Punkte haben. Dieser Rechner berechnet Bewegungsdurchschnitte, bei denen alle Begriffe gleich gewichtet werden. Sie können auch gewichtete Bewegungsdurchschnitte erzeugen, in denen einige Begriffe größer als andere gegeben werden. Zum Beispiel geben mehr Gewicht auf neuere Daten, oder die Schaffung eines zentral gewichteten Mittel, wo die mittleren Begriffe mehr gezählt werden. Sehen Sie den gewichteten gleitenden Mittelwertartikel und Rechner für weitere Informationen. Zusammen mit beweglichen arithmetischen Mitteln sehen einige Analytiker auch den bewegten Median der geordneten Daten an, da der Median von fremden Ausreißern nicht betroffen ist. Moving Average Ribbon DEFINITION von Moving Average Ribbon Eine Technik, die in der technischen Analyse verwendet wird, um sich ändernde Trends zu identifizieren. Es wird durch die Platzierung einer großen Anzahl von gleitenden Durchschnitten auf das gleiche Diagramm erstellt. Wenn alle Mittelwerte sich in die gleiche Richtung bewegen, wird der Trend stark sein. Umkehrungen werden bestätigt, wenn die Mittelwerte kreuzen und in die entgegengesetzte Richtung fahren. Die im Diagramm verwendeten gleitenden Mittelwerte beginnen mit dem 50-tägigen gleitenden Durchschnitt und erhöhen sich um 10-tägige Perioden bis zum letzten Durchschnitt von 200. (50, 60, 70, 80. 190, 200) BREAKING DOWN Moving Average Ribbon Responsiveness to Die sich ändernden Bedingungen werden durch die Änderung der Anzahl der in den gleitenden Durchschnitten verwendeten Zeiträume berücksichtigt. Je kürzer die Anzahl der Perioden ist, die verwendet werden, um den Durchschnitt zu schaffen, desto empfindlicher ist das Band auf leichte Preisänderungen. Zum Beispiel wird eine Reihe von 5, 15, 25, 35 und 45-Tage gleitenden Durchschnitten eine bessere Wahl sein, um kurzfristige Umkehrungen zu finden, dann 150, 160, 170, 180-Tage-Umzugsdurchschnitte. Moving Average Forecasting Einführung. Wie Sie vielleicht vermuten, sehen wir uns einige der primitivsten Ansätze zur Prognose an. Aber hoffentlich sind dies zumindest eine lohnende Einführung in einige der Computing-Fragen im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir fortfahren, indem wir am Anfang beginnen und mit Moving Average Prognosen arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist mit gleitenden durchschnittlichen Prognosen vertraut, unabhängig davon, ob sie glauben, dass sie sind. Alle College-Studenten machen sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, wo Sie vier Tests während des Semesters haben werden. Nehmen wir an, Sie haben eine 85 bei Ihrem ersten Test. Was würdest du für deinen zweiten Test-Score vorhersagen Was denkst du, dein Lehrer würde für deinen nächsten Test-Score voraussagen Was denkst du, deine Freunde können für deinen nächsten Test-Score voraussagen Was denkst du, deine Eltern können für deinen nächsten Test-Score voraussagen All das Blabbing, das du mit deinen Freunden und Eltern machen kannst, sie und deinem Lehrer sind sehr wahrscheinlich zu erwarten, dass du etwas im Bereich der 85 bekommst, die du gerade bekommen hast. Nun, jetzt können wir davon ausgehen, dass trotz Ihrer Selbst-Förderung zu Ihren Freunden, Sie über-schätzen Sie sich selbst und Figur können Sie weniger für den zweiten Test zu studieren und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekümmert zu gehen Erwarten Sie auf Ihrem dritten Test zu bekommen Es gibt zwei sehr wahrscheinlich Ansätze für sie eine Schätzung zu entwickeln, unabhängig davon, ob sie es mit Ihnen teilen wird. Sie können sich selbst sagen, "dieser Kerl ist immer bläst Rauch über seine smarts. Er wird noch 73, wenn er glücklich ist. Vielleicht werden die Eltern versuchen, mehr unterstützend zu sein und zu sagen, quotWell, so weit hast du eine 85 und eine 73 bekommen, also vielleicht solltest du auf eine (85 73) 2 79 kommen. Ich weiß nicht, vielleicht, wenn du weniger feiern musst Und werent wedelte den Wiesel überall auf den Platz und wenn du anfing, viel mehr zu studieren, könntest du eine höhere Punktzahl bekommen. Diese beiden Schätzungen belegen tatsächlich durchschnittliche Prognosen. Die erste nutzt nur Ihre aktuellste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als eine gleitende durchschnittliche Prognose mit einer Periode von Daten bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass all diese Leute, die auf deinem großen Verstand zerschlagen sind, dich irgendwie verärgert haben und du entscheidest, den dritten Test aus deinen eigenen Gründen gut zu machen und eine höhere Punktzahl vor deinem Quoten zu setzen. Sie nehmen den Test und Ihre Partitur ist eigentlich ein 89 Jeder, auch Sie selbst, ist beeindruckt. So, jetzt haben Sie die endgültige Prüfung des Semesters kommen und wie üblich fühlen Sie sich die Notwendigkeit, goad jeder in die Herstellung ihrer Vorhersagen darüber, wie youll auf den letzten Test zu tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich kannst du das Muster sehen. Was glaubst du, ist die genaueste Pfeife während wir arbeiten. Jetzt kehren wir zu unserer neuen Reinigungsfirma zurück, die von deiner entfremdeten Halbschwester namens Whistle während wir arbeiten. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst stellen wir die Daten für eine dreistellige gleitende durchschnittliche Prognose vor. Der Eintrag für Zelle C6 sollte jetzt sein. Du kannst diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie sich der Durchschnitt über die aktuellsten historischen Daten bewegt, aber genau die drei letzten Perioden verwendet, die für jede Vorhersage verfügbar sind. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngsten Vorhersage zu entwickeln. Dies unterscheidet sich definitiv von dem exponentiellen Glättungsmodell. Ive enthalten die quotpast Vorhersagen, weil wir sie in der nächsten Webseite verwenden, um die Vorhersagegültigkeit zu messen. Jetzt möchte ich die analogen Ergebnisse für eine zweistufige gleitende durchschnittliche Prognose vorstellen. Der Eintrag für Zelle C5 sollte jetzt sein. Du kannst diese Zellformel in die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast-Vorhersagen für illustrative Zwecke und für die spätere Verwendung in der Prognose-Validierung enthalten. Einige andere Dinge, die wichtig sind, um zu bemerken. Für eine m-Periode gleitende durchschnittliche Prognose werden nur die m aktuellsten Datenwerte verwendet, um die Vorhersage zu machen. Nichts anderes ist nötig Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie quotpast Vorhersagen quot, bemerken, dass die erste Vorhersage in Periode m 1 auftritt. Beide Themen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der beweglichen Mittelfunktion. Jetzt müssen wir den Code für die gleitende Mittelprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden gelten, die Sie in der Prognose und dem Array von historischen Werten verwenden möchten. Sie können es in der beliebigen Arbeitsmappe speichern. Funktion MovingAverage (Historical, NumberOfPeriods) Als Single Declaring und Initialisierung von Variablen Dim Item als Variant Dim Zähler als Integer Dim Akkumulation als Single Dim HistoricalSize als Integer Initialisierung von Variablen Counter 1 Akkumulation 0 Bestimmen der Größe von Historical Array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Akkumulation der entsprechenden Anzahl der aktuellsten bisher beobachteten Werte Akkumulation Akkumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklärt. Sie möchten die Funktion auf der Kalkulationstabelle positionieren, damit das Ergebnis der Berechnung erscheint, wo es wie folgt ankommt:

Comments

Popular Posts